

Extreme-scale scripting: Opportunities for large task-
parallel applications on petascale computers

Michael Wilde, Ioan Raicu, Allan Espinosa, Zhao Zhang, Ben Clifford,
Mihael Hategan, Sarah Kenny, Kamil Iskra, Pete Beckman, Ian Foster
Computation Institute,
University of Chicago and Argonne National Laboratory

Abstract. Parallel scripting is a loosely-coupled programming model in which
applications are composed of highly parallel scripts of program invocations that
process and exchange data via files. We characterize here the applications that can
benefit from parallel scripting on petascale-class machines, describe the mechanisms
that make this feasible on such systems, and present results achieved with parallel
scripts on currently available petascale computers.

1. The parallel scripting paradigm
John Ousterhout describes scripting as higher-level programming for the 21st Century[3].
Scripting has revolutionized application development on the desktop and server, accelerating
and simplifying programming by focusing on the composition of programs to form more
powerful applications. Understanding how to scale scripting to 21st century computers should
be among the priorities for researchers of next generation parallel programming models. Might
scripting not provide the same benefits for extreme-scale computers?

We believe that the answer to this question is yes. We introduce the concept and
implementation of parallel scripting, and describe what becomes possible when simple scripts
turn “ordinary” scientific programs into petascale applications running on 100,000 cores and
beyond. Scripting languages allow users to assemble sophisticated application logic quickly by
composing existing codes. In parallel scripting, users apply parallel composition constructs to
existing sequential or parallel programs. Using this approach, they can quickly develop highly
parallel applications that can be run efficiently on a 16-core workstation, a 16,000-core cluster,
or a 160K-core petascale system.

Parallel scripting is not a substitute for existing tightly coupled programming models such
as MPI. Rather, it is an alternative (and higher-level) path to massive parallelism, a path
particularly suitable for increasingly feasible and important problem-solving methods such as
the use of parameters sweeps and ensemble studies for exploring sensitivity to parametric,
structural, and initial condition uncertainty. The availability of extreme-scale computers makes
such methods feasible and attractive, even in the case of complex computations. Parallel
scripting allows users to apply these methods while leveraging the vast value embodied in
modern application codes—both serial and parallel—that empower the scientific, engineering,
and commercial computing of today and the foreseeable future.

We have been exploring such “many task” computing models[6] for several years, from the
perspective of both technologies and applications. On the technology front, we have explored,
in particular, a dataflow-driven parallel programming model that treats application programs as
functions, and their datasets as structured objects mapped to a simple abstract data model. We
have incorporated this model in a parallel scripting language, Swift, and implemented that
language on large parallel computers, including a 160K-core Blue Gene/P and a 62K-core Sun
Constellation. Swift programs may define hundreds of thousands (and soon millions) of tasks
that read and write an even greater number of files. We have developed task and data
management methods that can scale to extremely high dispatch rates and data volumes, and
used them to scale applications to up to 160K cores, with high efficiency and fault tolerance.

2. Software architecture for petascale parallel scripting
Our approach to high-performance parallel
scripting requires three layers, which from the
bottom up are: (1) a POSIX environment in
which to execute the individual application
tasks of a script; (2) a means to allocate
compute node resources, hold them for long
and varying periods of time (typically hours
rather than seconds) while rapidly scheduling
small independent tasks on the compute nodes
– even tasks of very short duration (down to
fractions of a second, but typically many
seconds or minutes); and (3) a language in
which to abstractly express scripts of highly

parallel application invocations, their data accesses, and the data interchange between them.
Modern concepts of scripting depend on POSIX system services such as fork() and exec() in

order to execute application programs from the script, and this require an operating system that
supports these or similar capabilities – notably, the ability to launch a new application program
and wait for it to complete. On the BG/P, the native IBM compute node kernel lacks these
features, and we provide them instead through the ZeptoOS compute node kernel[4], which
implements these features in a POSIX-compliant manner. On the Ranger Constellation system,
we use the native compute node operating system, which provides complete POSIX support.

3. The Falkon resource provisioner and lightweight scheduler
The compute node resources of petascale computing systems are typically managed by
traditional batch schedulers, which are designed and configured with policies for running large

parallel jobs that execute the same
application program on all compute
nodes allocated to the job, and
which run for extended periods of
time. Parallel scripting, however,
requires that many application
programs, each with an
independent set of arguments and
different sets of input and output
files, and having likely short and
often widely varying execution
times, be executable on any
compute node. This far more
dynamic scheduling model

Figure 1: Architecture for petascale scripting

Figure 2: Falkon Provisioning and Scheduling System

demands a multi-level scheduling approach, which we have implemented in a component
called Falkon, a Fast and Light-weight tasK executiON framework[4].

Falkon allocates nodes of a compute resource in large quantities, using the native batch
scheduler of the system, and runs a persistent task execution agent on each compute core that
rapidly executes arbitrary and independent POSIX processes on the allocated nodes. Falkon
consists of several components, shown in Figure 2: (1) a compute node agent that executes one
task at a time on a compute node core; (2) a service that maintains a queue of jobs for a set of
compute node resources, and which rapidly selects the next job to run on a FIFO basis; and (3)
a load-balancing client that evenly distributes work to the services

Using Falkon, we have been able to meet performance requirements necessary for petascale
scripting. Measurements of Falkon performance[4] indicate it can:

• execute over 3,000 tasks per second on the BG/P;
• launch, execute, and terminate 160K tasks on the BG/P at 160K-core scale in under

one minute;
• execute workloads of 913K science tasks on 116K BG/P cores in 2 hours, totalling

21.4 CPU years at 99.7% efficiency and 99.6% utilization (Figure 3); and
• execute one billion trivial tasks in 18 hours in multicore stress tests.

Users utilize Falkon by creating simple
scripts that contain a list of tasks to execute,
with arguments. Tasks are executed with
FIFO scheduling and with maximum
parallelism. Since tasks are sent to available
agents in the order that they appear in the
Falkon input script, users can sort tasks
“longest first” when task duration can be
estimated, thus achieving optimal utilization
of a block of compute nodes. Falkon
functionality has been packaged as a Swift
“execution provider” to enable higher level
programming (described in the next section).
It has also been implemented as a newer Swift

execution provider, which has the additional capability of allocating multiple “time-space”
blocks of varying number of cores and wall-time duration, to best fit the current task demand.

4. The Swift parallel scripting language
Swift is a scripting language that makes it easy for a user to specify and run application
programs in parallel, and to specify the data passing and dependencies between different
application invocations, as well as the structure of the data (typically in terms of files and
directories). It provides run time support that automates data management and enables the same
Swift script to run on multi-core workstations, local clusters, remote grids, cloud resources, and
petascale supercomputers. It is common to write Swift applications in three layers: a top layer
which specifies the workflow, a middle layer of interface code to adapt specific applications,
and the lowest layer, which defines the interfaces of the applications themselves. Studies on
early versions of Swift have shown that the amount of code needed to express applications in
this form is substantially lower than by ad hoc scripting in “shell scripts” [9]

Swift also provides a provenance recording mechanism that enables users to log how each
data item was produced, query that knowledge base to locate data and methods, and retrieve the
history of an object for validation, sharing, or reproduction of computational results.

To show the power of the Swift language, here is a fragment of Swift code to perform
protein-folding simulations using an application called “ItFix”[1]. This simple code fragment,

Figure 3: Falkon performance (DOCK application)

given ten protein sequences, nsim=1000, two
starting temperatures and five update
intervals, will, in each of three (maxrounds)
rounds of prediction, execute 10 x 1000 x 2 x
5 = 100,000 simulations. ItFix scripts been
executed on up to 32,000 cores on the

Argonne BG/P. Similar code can sweep across any combination of ItFix parameters. This
abstract script runs without change on multiple TeraGrid clusters including the 62K-core
supercomputer “Ranger”.

The Swift data model provides the ability to describe nested on-disk directories as simple
structures and arrays. These datasets are transparently sent to remote and parallel Swift
procedures on various platforms. An operation called “mapping” translates between the simple
abstract data model of Swift and the potentially messy, complex model of real-world directory
structures and file naming and structuring conventions.

Swift has a C-like syntax, but many of the semantic aspects of a “functional” programming
language. Procedures are expressed as functions, which are permitted to return multiple values;
statements are executed in data-dependency order; variables (including array elements and
structure members) are single-assignment, which makes it significantly simpler for Swift to
automatically execute independent operations in parallel. Application programs are abstracted
as functions, whose arguments and results are files and file-structured datasets. Layering on the
ability to represent application programs as procedures, the user can define compound
procedures to create libraries of higher-level processes that capture the essential protocols of an
application domain’s data preparation and analysis procedures.

Users interact with Swift at many levels. Scientific programmers create Swift libraries that
encapsulate the execution of scientific applications, data preparation, and analysis methods.
These libraries provide a stable base of functionality specific to a user community. Higher-level
users write simple scripts using these libraries to perform large-scale computing tasks. The
highest-level Swift users will not need to program at all: they will invoke their scripts and view
their results through web interfaces.

5. Example applications
Applications to which we
have applied large-scale
parallel scripting [1][2][7][8] are
listed in Table 1. Each is
capable of consuming a large
fraction, or even all, of a
petascale computer. All
involve doing many tasks at
once, with often quite
substantial amounts of
communication both within
each task and among tasks.

6. Conclusion
Our experience in applying Swift indicates that it enables the productive programming

paradigm of knitting together existing application programs using a functional model to rapidly
and productively compose new, higher level applications that can efficiently use the parallel
resources of a petascale system. We are currently developing enhancements that apply
“collective” data management techniques[11] to efficiently move data in and out of applications

foreach prot in protein {
 foreach sT in startT {
 foreach tUp in tUpdate {
 ItFix(prot, nsim, maxrounds, sT, tUp);
 }
 }
}

Table 1: Parallel Scripting Applications

Legend: E: evaluated, D: in development, O: in some degree of operational use

in a way that leverages the interconnect and filesystem hardware of petascale systems. We
believe that, when complete, the parallel scripting model will play an indispensible role in the
extreme-scale programming tool chest.

Acknowledgements.
This research is supported in part by NSF grants OCI-721939 and PHY-636265, NIH grants
DC08638 and DA024304-02, U.S. Dept. of Energy under Contract DE-AC02-06CH11357,
NASA Ames Research Center GSRP grant NNA06CB89H, and the UChicago/Argonne
Computation Institute.

References
[1] Hocky, G., Wilde, M., Debartolo, J., Hategan, M., Foster, I., Sosnick, T.R., and Freed,

K.F.). Towards petascale ab initio protein folding through parallel scripting. Argonne
Technical Report ANL/MCS-P1612-0409.

[2] Kenny, S, M. Andric, M. Wilde, Michael C. M. Neale, S. Boker, SL. Small, Parallel
Workflows for Data-Driven Structural Equation Modeling in Functional
Neuroimaging, Argonne Technical Report ANL/MCS-P1613-0409.

[3] Ousterhout, J. Scripting: Higher Level Programming for the 21st Century IEEE
Computer March 1998

[4] Raicu, R,. Zhao Zhang, Mike Wilde, Ian Foster, Pete Beckman, Kamil Iskra, Ben
Clifford. “Toward Loosely Coupled Programming on Petascale Systems”,
IEEE/ACM Supercomputing 2008.

[5] Raicu. I. "Many-Task Computing: Bridging the Gap between High Throughput
Computing and High Performance Computing", Doctorate Dissertation, Computer
Science Department, University of Chicago, March 2009

[6] Raicu, I, Ian Foster, Yong Zhao. “Many-Task Computing for Grids and
Supercomputers”, Invited Paper, IEEE Workshop on Many-Task Computing on Grids
and Supercomputers (MTAGS08), 2008, co-located with IEEE/ACM
Supercomputing 2008.

[7] Small, S. L., Wilde, M., Kenny, S., Andric, M., & Hasson, U. (2009). Database-managed
Grid-enabled analysis of neuroimaging data: The CNARI framework. International
Journal of Psychophysiology, in press, published online 2/20/2009

[8] Stef-Praun, I. Foster, U. Hasson, M. Hategan, S.L. Small and M. Wilde, Accelerating
medical research using the Swift Workflow System, Paper Presented at the
HealthGrid 2007, Geneva (2007).

[9] Zhao, Y., Dobson, J., Foster, I., Moreau, L., Wilde, M., A Notation and System for
Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data,
SIGMOD Record, September 2005.

[10] Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu,
I., Stef-Praun, T., Wilde, M. "Swift: Fast, Reliable, Loosely Coupled Parallel
Computation," IEEE Workshop on Scientific Workflows 2007.

[11] Zhang, Z., Allan Espinosa, Kamil Iskra, Ioan Raicu, Ian Foster, Michael Wilde, “Design
and Evaluation of a Collective I/O Model for Loosely-coupled Petascale
Programming”, IEEE Workshop on Many-Task Computing on Grids and
Supercomputers (MTAGS08), co-located with IEEE/ACM Supercomputing, 2008.

